МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Луганский государственный университет имени Владимира Даля» (ФГБОУ ВО «ЛГУ им. В. Даля»)

Институт строительства, архитектуры и жилищно-коммунального хозяйства

Ректор

ФГБОУ ВО «ЛРУ им. В. Даля»

В. Д. Рябичев

2023 г.

ПРОГРАММА ВСТУПИТЕЛЬНОГО ИСПЫТАНИЯ ПО ПРОГРАММАМ ПОДГОТОВКИ НАУЧНЫХ И НАУЧНО-ПЕДАГОГИЧЕСКИХ КАДРОВ В АСПИРАНТУРЕ

ПО НАУЧНОЙ СПЕЦИАЛЬНОСТИ 2.1.3 ТЕПЛОСНАБЖЕНИЕ, ВЕНТИЛЯЦИЯ, КОНДИЦИОНИРОВАНИЕ ВОЗДУХА, ГАЗОСНАБЖЕНИЕ И ОСВЕЩЕНИЕ

Принято на Ученом совете $\Phi \Gamma БОУ$ ВО «ЛГУ им. В. Даля» «02» июня 2023 г., Протокол № 9

Автор (ы): заведующая кафедрой вентиляции, теплогазо- и водоснабжения канд. техн. наук, доц. Богатырёва Л.Ю.

> Подпись Ди _ «05» мая 2023 г.

профессор кафедры вентиляции, теплогазо- и водоснабжения доктор техн. наук, проф. Соколов В.И.

ОШИ «05» мая 2023 г. Подпись

профессор кафедры вентиляции, теплогазо- и водоснабжения доктор техн. наук, проф. Андрийчук Н.Д.

Подпись *Иму* «05» мая 2023 г.

Документ одобрен на заседании кафедры вентиляции, теплогазо- и водоснабжения

от «10» мая 2023 г., протокол № 9

Документ утвержден на заседании Ученого совета Института строительства, архитектуры и жилищно-коммунального хозяйства

от «25» мая 2023г., протокол № 9

СОГЛАСОВАНО:

Проректор по научной работе и инновационной деятельности

Заведующий отделом аспирантуры и докторантуры

Витренко В. А. Артемова Ю. А.

Предисловие

Вступительные испытания служат основанием ДЛЯ оценки теоретической поступающего подготовленности выполнению К профессиональных задач по направлению подготовки 08.06.01 «Техника и технологии строительства» и продолжению образования по направленности 2.1.3 «Теплоснабжение, программы аспирантуры: вентиляция, кондиционирование воздуха, газоснабжение и освещение».

Программа вступительных испытаний в аспирантуру разработана на выпускающей кафедре вентиляции, теплогазо-и водоснабжения института строительства, архитектуры и жилищно-коммунального хозяйства, реализующего основные образовательные программы подготовки научно-педагогических кадров в аспирантуре, в соответствии с государственными образовательными стандартами высшего образования.

1 Цели и задачи вступительных испытаний

Целью вступительных испытаний в аспирантуру по направленности программы «Теплоснабжение, вентиляция, кондиционирование воздуха, газоснабжение и освещение» является выявление уровня теоретической и практической подготовки, поступающего в области, соответствующей выбранного направления подготовки 08.06.01 «Техника и технологии строительства». Вступительные испытания выявляет умение поступающего использовать знания, приобретенные в процессе теоретической подготовки, для решения профессиональных задач, а также его подготовленность к продолжению образования по программе подготовки научно-педагогических кадров в аспирантуре.

В основу программы вступительных испытаний в аспирантуру по программе «Теплоснабжение, вентиляция, кондиционирование воздуха, газоснабжение и освещение» положены профессиональные дисциплины, изучаемые при обучении в вузе: теплоснабжение, вентиляция,

кондиционирование воздуха, отопление, строительная теплофизика и газоснабжение (уровни квалификации - специалист, магистр).

2. Требования к профессиональной подготовке лица, поступающего в аспирантуру

К освоению программ подготовки научно-педагогических кадров в аспирантуре допускаются лица, имеющие образование не ниже высшего образования - специалист или магистр.

Претендент на поступление в аспирантуру должен быть широко эрудирован, иметь фундаментальную научную подготовку, владеть современными информационными технологиями, включая методы получения, обработки и хранения информации, уметь самостоятельно формировать научную тематику, организовывать И вести научноисследовательскую деятельность по избранной научной специальности.

Требования к уровню специализированной подготовки, необходимому для освоения образовательной программы подготовки научно-педагогических кадров, и условия конкурсного отбора включают:

навыки:

владение самостоятельной научно-исследовательской и научнопедагогической деятельностью, требующей широкого образования в соответствующем направлении;

умения:

формулировать и решать задачи, возникающие в ходе научноисследовательской и педагогической деятельности и требующие углубленных профессиональных знаний;

анализировать данные о фактическом состоянии систем теплогазоснабжения, отопления, вентиляции и кондиционирования воздуха;

прогнозировать тенденции развития указанных систем и воплощать их в проектной практике;

определять режимно- эксплуатационные и технико-экономические параметры работы названных систем;

знания:

устройство систем теплогазоснабжения, вентиляции, отопления, кондиционирования воздуха и газоснабжения;

оптимизация проектирования названных систем;

приемка, пуск в эксплуатацию, позитивные и негативные факторы работы систем;

вопросы ресурсосбережения и экологической безопасности применительно к указанным системам.

3 Содержательная часть программы вступительного экзамена

3.1 Направленность программы аспирантуры «Теплоснабжение, вентиляция, кондиционирование воздуха, газоснабжение и освещение»

3.1.1 Содержание разделов дисциплины

Тема 1. Теплоснабжение

Определение расходов теплоты. Водяные закрытые и открытые системы. Присоединение абонентов к тепловым сетям. Регулирование отпуска теплоты. Схемы и гидравлический расчет тепловых сетей. Гидравлический тепловой теплогазоснабжения. И режимы систем Конструкции и расчет теплопроводов. Оборудование тепловых пунктов. теплоснабжения. Источники теплоты систем Основы техникоэкономического расчета систем теплоснабжения. Основы эксплуатации тепловых сетей. Вопросы ресурсосбережения.

Тема 2. Отопление

Тепловой комфорт при отоплении помещений. Классификация систем отопления. Виды и характеристика теплоносителей. Принципиальные схемы систем водяного отопления. Расчетная мощность систем отопления. Классификация отопительных приборов, выбор и размещение, регулирование теплоотдачи. Теплопроводы систем отопления: размещение,

арматура, теплоизоляция. Удаление воздуха и обеспечение циркуляции теплоносителя. Назначение, место установки и конструкция расширительного бака. Вопросы энергоэффективности и энергосбережения. Основы эксплуатации.

Тема 3. Вентиляция

Понятие, назначение и задачи вентиляции. Принципы и способы вентилирования помещений. Классификация вентиляционных систем. Схемы организации воздухообмена помещений гражданских и промышленных зданий. Расчет воздухообмена при различных способах вентилирования. Потоки вредных поступлений в помещения зданий различного назначения. Технологические схемы систем с механическим побуждением. Оборудование: воздуховоды, побудители расхода, приточные и вытяжные камеры, запорно-регулирующие устройства. Местная вытяжная и приточная вентиляция. Воздушные завесы. Испытания систем вентиляции и основы эксплуатации.

Тема 4. Кондиционирование воздуха

Понятие о термодинамической модели систем кондиционирования и (CKB). СКВ. вентиляции Структурная схема классификация Поверхностные и контактные аппараты для тепловлажностной обработки воздуха в СКВ. Построение на I-d диаграмме характерных процессов изменения параметров воздуха. Области возможного изменения состояния влажного воздуха в поверхностных теплообменниках и контактных аппаратах при использовании воды в качестве рабочего тела. Увлажнение воздуха паром. Процессы изменения состояния воздуха в многозональных СКВ, принцип зонирования. Способы автоматического регулирования Основное оборудование центральных СКВ. Основное СКВ. работы оборудование местных СКВ. Современные эффективные системы оборудование кондиционирования воздуха. Испытания и сдача СКВ в об эксплуатацию. Общие сведения эксплуатации СКВ. Вопросы ресурсосбережения в СКВ.

Тема 5. Газоснабжение

Газоснабжение и его место в топливоэнергоснабжении городов и населенных пунктов. Технико-экономические преимущества топлива и его свойства. Добыча, подготовка и дальний транспорт природного газа. Системы газораспределения городов: классификация, устройство, требования к ним. Пункты редуцирования газа: назначение, исполнение, состав оборудования; расчет, подбор, настройка оборудования. Защита газопроводов от коррозии. Методика определения годовых и расчетных расходов газа. Гидравлический расчет газопроводов, допустимые потери Основы снабжения потребителей давления газа. сжиженными углеводородными газами. Принципы рационального сжигания Теоретические основы горения газов. Классификация газовых горелок и требования к ним. Подбор горелок для газосжигающих агрегатов. Основы эксплуатации систем газораспределения и газопотребления. Вопросы ресурсоэнергосбеоежения.

Тема 6. Строительная теплофизика

Тепловой, воздушный и влажностный режим помещения. Стационарная и нестационарная теплопередача и влагопередача через ограждающие конструкции. Расчет и подбор наружных ограждающих конструкций. Теплоустойчивость ограждений. Воздушный режим помещений. Влажностный режим помещений. Обеспеченность воздушнотеловым режимом.

3.1.2 Примерный перечень вопросов для формирования билетов вступительного испытания

- 1. Основные понятия, характеризующие процессы перемещения дисперсного материала потоком воздуха.
- 2. Последовательность технологических операций при монтаже механической вентиляции и наладке вентиляционных систем.

- 3. Виды систем промышленной вентиляции, расчётные параметры наружного воздуха, воздушной среды помещения, допустимое содержание вредных веществ в воздухе.
- 4. Кратность воздухообмена. Определение воздухообмена по нормативной кратности в зданиях.
- 5. Методы защиты от механического и аэродинамического шума в системах вентиляции.
- 6. Рециркуляция воздуха. Условия (требования) к применению рециркуляции воздуха.
- 7. Воздушные завесы. Назначение, технологические схемы, классификация. Область применения, конструктивные решения.
- 8. Классификация систем вентиляции.
- 9. Основные конструктивные элементы приточных и вытяжных вентиляционных установок с механическим побуждением движения воздуха.
- 10. Классификация вентиляционных воздуховодов.
- 11. Кондиционирование воздуха. Общие сведения. Классификация систем
- 12. Кондиционирования воздуха.
- 13. Процессы тепло-массообмена между воздухом и водой. Криволинейный треугольник.
- 14. Построение процессов обработки воздуха на (I-d) диаграмме для теплого периода года (прямоточная схема, схема с одной рециркуляцией воздуха).
- 15. Построение процессов обработки воздуха на на (I-d) диаграмме для холодного периода года (прямоточная схема, схема с одной рециркуляцией воздуха).
- 16. Контактные аппараты для тепловлажностной обработки воздуха (форсуночного, сотового орошения, пенные, циклонно-пенные, ударно-пенные, роторного типа).
- 17. Кондиционеры сплит-системы. Классификация. Устройство, управление режимами работы.
- 18. Компрессионная холодильная машина: устройство, работа.

- 19. Хладагенты: типы (марки); требования к ним.
- 20. Двухступенчатое (косвенное и прямое) охлаждение воздуха. Построение процесса на (I-d) диаграмме влажного воздуха.
- 21. Поверхностные воздухонагреватели (устройство, работа, методы расчета).
- 22. Подбор сетевых и подпиточных насосов для водяных закрытых систем теплоснабжения.
- 23. Подбор сетевых и подпиточных насосов для водяных открытых систем теплоснабжения.
- 24. Центральные тепловые пункты: назначение, оборудование; достоинства и недостатки их применения.
- 25. Теплоснабжение. Основные термины, классификация.
- 26. Индивидуальные тепловые пункты: назначение, принципиальные схемы, основное оборудование.
- 27. Способы аккумуляции теплоты в системах горячего водоснабжения.
- 28. Надежность работы систем теплоснабжения.
- 29. Основы гидравлического расчета водяных тепловых сетей.
- 30. Пьезометрические графики давлений.
- 31. Тепловые сети: способы прокладки теплопроводов.
- 32. Энергосбережение в системах вентиляции.
- 33. Гидравлический расчет систем водяного отопления методом удельных потерь давления.
- 34. Особенности расчета площади отопительных приборов.
- 35. Тепловой баланс помещения.
- 36. Высокоэффективные отопительные приборы отечественного и зарубежного производства.
- 37. Расчет площади отопительных приборов в однотрубных системах отопления.
- 38. Бифилярные системы отопления.
- 39. Регулирование теплоотдачи отопительных приборов.
- 40. Теплопотери помещений: основные, дополнительные; расчет теплопотерь.

- 41. Расчет площади отопительных приборов в двухтрубных системах отопления.
- 42. Теплотехнический расчет ограждающих конструкций: цель расчета, методика расчета.
- 43. Теплообмен: способы, базовые уравнения.
- 44. Теплоустойчивость и теплоусвоение ограждающих конструкций.
- 45. Теплотехнический расчет полов в зависимости от их конструкции.
- 46. Условия комфортности в помещении.
- 47. Паропроницаемость ограждающих конструкций.
- 48. Влияние влажности на теплозащитные свойства ограждающих конструкций.
- 49. Воздухопроницаемость ограждающих конструкций.
- 50. Влажностный режим наружных ограждений. Привести методику проверки внутренней поверхности ограждения (на примере стены) на возможность конденсации влаги.
- 51. Особенности теплотехнического расчета покрытий.
- 52. Требования к горючим газам для систем централизованного и децентрализованного газоснабжения.
- 53. Классификация газопроводов по давлению газа и другим показателям.
- 54. Классификация систем газораспределения населенных пунктов и их устройство.
- 55. Добыча, подготовка и дальний транспорт природного газа.
- 56. Защита газопроводов от коррозии.
- 57. Гидравлический расчет газовых сетей: поверочный, конструкторский, допустимые потери давления.
- 58. Основы снабжения потребителей сжиженными углеводородными газами.
- 59. Основы рационального сжигания газа.
- 60. Классификация газовых горелок и требования к ним.
- 61. Пункты редуцирования газа: назначение, состав оборудования, расчет, подбор и настройки.
- 62. Расчет теплопотерь помещения и требуемого сопротивления теплопередаче наружных ограждающих конструкций.

- 63. Особенность теплообмена в воздухонагревателях. Водяные и паровые воздухонагреватели. Современные отечественные и зарубежные конструкции воздухонагревателей.
- 64. Рациональный выбор схемы организации воздухообмена.
- 65. Здание как единая тепломассообменная, аэродинамическая система. Взаимодействие здания и окружающей среды. Современные концепции зданий. Энергоэффективные здания. Здания с нулевым энергопотреблением.
- 66. Классификация систем отопления, виды теплоносителя, типы нагревательных приборов. Основы теплового и гидравлического расчета.
- 67. Основные характеристики и разновидности систем теплоснабжения. Структурная схема системы теплоснабжения, основные элементы системы и их функциональные задачи.
- 68. Теплоносители для систем теплоснабжения требования к свойствам и параметрам, виды теплоносителей, их достоинства и недостатки. Принципиальные схемы систем теплоснабжения
- 69. Определение расходов теплоты. Классификация тепловых нагрузок и методы определения их значений. Часовые и годовые расходы теплоты. Часовые, суточные и годовые графики потребления теплоты по видам тепловых нагрузок.
- 70. Регулирование отпуска теплоты. Классификация регулирования отпуска теплоты. Регулирование отпуска теплоты на отопление : качественное, качественное, количественное.
- 71. Гидравлический расчет тепловых сетей. Задачи гидравлического расчета. Схемы тепловых сетей и их структура. Основные расчетные зависимости.
- 72. График давлений в водяной тепловой сети. Статический и динамический режимы работы тепловой сети. Требования к режимам давлений.
- 73. Регулирование отпуска теплоты на горячее водоснабжение в открытой и закрытой системах теплоснабжения.
- 74. Основные параметры работы нагнетателей Характеристики нагнетателей.

- 75. Характеристика сети. Метод наложения характеристик. Влияние изменения характеристик нагнетателей и сети на параметры системы «нагнетательсеть».
- 76. Классификация насосов. Особенности работы насосов. Пуск насосов. Кавитация насосов.
- 77. Классификация вентиляторов. Радиальные и осевые вентиляторы. Подбор вентиляторов.
- 78. Преимущества горючих газов как топлива и требования, предъявляемые к ним. Требования к качеству газового топлива. Классификация горючих газов, их состав, горючие и негорючие компоненты.
- 79. Влажность газов (абсолютная и относительная). Отрицательное воздействие влаги на условия транспортирования и свойства горючих газов. Кристаллогидраты: причины возникновения и способы борьбы.
- 80. Теплота сгорания горючих газов (низшая и высшая), число Воббе. Сравнение теплотворной способности разных горючих газов. Пределы воспламеняемости (взрываемости) горючих газов.
- 81. Распределительные газопроводы низкого давления: схемы отдачи газа, определение расчетных расходов газа на участках. Гидравлический расчет газопроводов низкого давления: расчетные зависимости, номограммы, порядок учета потерь давления в местных сопротивлениях. Располагаемый перепад давления в газопроводах низкого давления. Порядок определения и гидростатического давления В системах газоснабжения гидравлическом расчете. Оптимальное распределение располагаемых перепадов давления в газовой сети низкого давления.
- 82. Гидравлический расчет тупиковых газопроводов низкого давления при различных схемах отдачи газа из сети. Определение расчетных расходов газа для участков, несущих путевую и транзитную нагрузку. Понятия путевого, транзитного и расчетного расходов газа.
- 83. Расчет годового расхода газа в жилых домах и на предприятиях бытового обслуживания непроизводственного характера (предприятиями

- общественного питания, учреждениями здравоохранения, фабрикамипрачечными и банями). Расчет годового расхода газа на теплоснабжение промышленных предприятий.
- 84. Регулирование давления в газораспределительных системах. Регуляторы давления, их классификация, основные конструктивные элементы. Порядок подбора регуляторов давления газа.

3.2.3 Литература

Основная литература:

- 1. Ананьев, В.А. Системы вентиляции и кондиционирования. Теория и практика / В.А. Ананьев, Л.Н. Балуева, А.Д. Гальперин [и др.]. – Москва: Евроклимат, 2003. – 416 с.
- 2. Андрийчук, Н.Д. Пути совершенствования систем теплоснабжения / Н.Д. Андрийчук, В.И. Соколов, А.А. Коваленко, К.М. Дядичев. Луганск: ВНУ им. В. Даля, 2003. 244 с.
- 3. Беккер, А.М. Системы вентиляции / А.М. Беккер. Москва: Техносфера, Евроклимат, 2005. – 232 с.
- 4. Богословский, В.Н. Отопление и вентиляция. Учебник для вузов. В 2 частях. / В.Н. Богословский, В.И. Новожилов, Б.Д. Симаков, В.П. Титов; под ред. В.Н. Богословского. Москва: Стройиздат, 1976.
- 5. Брюханов, О.Н. Газоснабжение / О.Н. Брюханов, В.А. Жила, А.И. Плужников. М.: Академия, 2008. 448с.
- 6. Гусенцова, Я.А. Системы вентиляции: моделирование, оптимизация / Я.А. Гусенцова, К.Н. Андрийчук, А.А. Коваленко, В.И. Соколов. Луганск: ВНУ им. В. Даля, 2005. 206 с.
- 7. Гусенцова, Я.А. Струйная техника в системах вентиляции / Я.А. Гусенцова, Е.А. Иващенко, А.А. Коваленко [и др.]. Луганск: ВНУ им. В. Даля, 2007. 292 с.
- 8. Дячек, П.И. Кондиционирование воздуха и холодоснабжение / П.И. Дячек, Д.Г. Ливанский. Минск: БНТУ, 2017. 90 с.

- 9. Жила, В.А. Газоснабжение / В.А. Жила. Москва: ACB, 2014 386 с.
- 10. Иванов, Н.И. Инженерная акустика. Теория и практика борьбы с шумом / Н.И. Иванов. Москва: Университетская книга, Логос, 2008. 424 с.
- 11. Калмаков, А. А. Автоматика и автоматизация систем теплогазоснабжения и вентиляции / А.А. Калмаков, Ю.А. Кувшинов, С.С. Романова, С.А. Щелкунов. Москва: Стройиздат, 1986. 479 с.
- 12. Каменев, П.Н. Вентиляция / П.Н. Каменев, Е.И. Тертичник. Москва: ACB, 2008. 624 с.
- 13. Махов, Л.М. Отопление / Л.М. Махов. Москва: ACB, 2014. 400 с.
- 14. Посохин, В.Н. Аэродинамика вентиляции / В.Н. Посохин. Москва: ABOK-Пресс, 2008. 209 с.
- 15. Посохин, В.Н. Вентиляция / В.Н. Посохин, Р.Г. Сафиуллин, В.А. Бройда. Москва: ACB, 2020. 624 с.
- 16. Свистунов, В.М. Отопление, вентиляция и кондиционирование воздуха объектов агропромышленного комплекса и жилищно-коммунального хозяйства / В.М. Свистунов, Н.К. Пушняков. Санкт-Петербург: Политехника, 2007. 423 с.
- 17. Сканави, А.Н. Отопление / А.Н. Сканави, Л.М. Махов. Москва: ACB, 2008. 576 с.
- 18. Соколов, В.И. Аэродинамика газовых потоков в каналах сложных вентиляционных систем / В.И. Соколов. Луганск: ВУГУ, 1999. 200 с.
- 19. Соколов, В.И. Инженерные задачи диффузии примеси в потоке / В.И. Соколов, А.А. Коваленко А.А., Г.С. Калюжный [и др.]. Луганск: ВУГУ, 2000. 168 с.
- 20. СП 118.13330.2012 Общественные здания и сооружения. Актуализированная редакция СНиП 31-06-2009 (с Изменениями N 1, 2) // Информационно-справочная система «Техэксперт». Режим доступа: URL: http://docs.cntd.ru/document/1200092705.

- 21. СП 131.13330.2012 Строительная климатология. Актуализированная редакция СНиП 23-01-99 (с Изменениями № 1, 2) // Информационно-справочная система «Техэксперт». Режим доступа: URL: http://docs.cntd.ru/document/1200095546.
- 22. СП 60.13330.2016 Отопление, вентиляция и кондиционирование воздуха. Актуализированная редакция СНиП 41-01-2003 // Информационносправочная система «Техэксперт». Режим доступа: URL: http://docs.cntd.ru/document/456054205.
- 23. Стефанов, Е.В. Вентиляция и кондиционирование воздуха / Е.В. Стефанов. Санкт-Петербург: ABOK СЕВЕРО-ЗАПАД, 2005. 400 с.
- 24. Хрусталев, Б.М. Теплоснабжение и вентиляция. Курсовое и дипломное проектирование / Б.М. Хрусталев, Ю.В. Кувшинов, В.М. Копко [и др.]. Москва: ACB, 2008. 783 с.
- 25. Чистович, С.А. Автоматизированные системы теплоснабжения и отопления / С.А. Чистович, В.К. Аверьянов, Ю.Я. Темпель, С.И. Быков. Ленинград: Стройиздат, 1987. 248 с.

Дополнительная литература:

- 1. Штокман, Е.А. Вентиляция, кондиционирование и очистка воздуха на предприятиях пищевой промышленности / Е.А. Штокман. Москва: ACB, 2001. 564 с.
- 2. Эльтерман, В.М. Вентиляция химических производств / В.М. Эльтерман. М.: Химия, 1980. 288 с.
- 3. Соколов, Е.Я. Теплофикация и тепловые сети / Е.Я. Соколов. Москва: МЭИ, 2009. 472 с.
- 4. Баркалов, Б.В. Кондиционирование воздуха в промышленных, общественных и жилых зданиях / Б.В. Баркалов, Е.Е. Карпис. Москва: Стройиздат, 1982. 312 с.
- 5. Еремкин, А.И. Тепловой режим зданий / А.И. Еремкин, Т.И. Королева. Москва: ACB, 2000. 368 с.

- 6. Вентиляция / В.И. Полушкин, С.М. Анисимов, В.Ф. Васильев, В.В. Дерюгин. Москва: Академия, 2008. 416 с.
- 7. Кулаков, И.Г. Справочник по газоснабжению / И.Г. Кулаков, И.А. Бережнов. Киев: Будивельник, 1979. 224с.
- 8. Мирам, А. О. Техническая термодинамика. Тепломассообмен / А.О. Мирам, В.А. Павленко. Москва: ACB, 2011. 352 с.
- 9. Гагарин, В.Г. Теплотехнический расчет наружных ограждений и расчет теплового режима здания / В.Г. Гагарин, Е.Г. Малявина, А.С. Маркевич. Москва: МГСУ, 2014. 110 с.
- 10. Тепловой расчет котельных агрегатов: нормативный метод / Н.В. Кузнецов, В.В. Митор, И.Е. Дубовский [и др.]. Москва: Эколит, 2011. 295 с.

4 Критерии оценки знаний, умений и навыков на вступительных испытаниях

Вступительные испытания по специальной дисциплине оценивают знания в области соответствующей научной дисциплины, навыки и способности поступающего, необходимые для обучения по программам аспирантуры, реализуемых направлением подготовки 08.06.01 «Техника и технологии строительства».

Вступительные испытания в аспирантуру по специальности проводятся в устной форме. Экзамен включает ответы на три теоретических вопроса по темам программы вступительных испытаний в аспирантуру по соответствующей направленности программы подготовки. Вопросы являются равнозначными по сложности. Уровень знаний поступающего оценивается по пятибалльной системе.

Критерии оценивания результатов ответа по специальной дисциплине

Количество	Критерии оценки
баллов	
5	Вопросы раскрыты полностью и без ошибок, ответ изложен грамотным научным языком без терминологических погрешностей, использованы ссылки на необходимые источники
	Вопросы раскрыты более чем наполовину, но без ошибок, либо имеются незначительные и/или единичные ошибки, либо допущены 1-2 фактические ошибки
3	Вопросы раскрыты частично либо ответ написан небрежно, неаккуратно, допущено 3-4 фактические ошибки. Обнаруживается только общее представление о сущности вопроса
2	Задание не выполнено (ответ отсутствует или вопрос нераскрыт)